Fabrication Aluminium

Material Description

Aluminium, with its chemical symbol Al and atomic number 13, is a lightweight, silvery-white, and malleable metal known for its exceptional combination of physical and mechanical properties. It boasts a density of approximately 2.7 g/cm³, making it one of the lightest commercially available metals. This low density, along with its high corrosion resistance due to a naturally forming oxide layer on its surface, makes aluminium a popular choice in various technical applications. The metal exhibits good thermal and electrical conductivity, enabling its use in electrical wiring, heat sinks, and other heat transfer applications. Furthermore, aluminium is highly recyclable, which not only reduces environmental impact but also conserves energy as it takes only a fraction of the energy to recycle aluminium compared to extracting it from bauxite ore, its primary source.

In addition to its lightweight nature, aluminium possesses excellent strength-to-weight ratio, making it a favored material in the aerospace and automotive industries. It is commonly alloyed with other elements like copper, magnesium, and silicon to enhance its mechanical properties. These alloys can be tailored to suit specific engineering requirements, balancing strength, corrosion resistance, and formability. Aluminium’s versatility extends to various forms, including sheets, plates, extrusions, and castings, making it suitable for a wide range of technical applications, from aircraft construction to automotive components, architectural structures, and consumer electronics. Its non-toxic nature and non-magnetic properties further enhance its utility in sectors such as food packaging and medical equipment, underlining aluminium’s significance in modern technical and industrial contexts.


6061-T6, 7075-T6, 7050, 2024, 5052, 6063, MIC6

Finishing Options

Alodine, Anodizing Types II, III, III + PTFE, ENP, Media Blasting, Nickel Plating, Powder Coating, Tumble Polishing.

DensityTensile Yield
Strength (MPa)
Conductivity (W/m-K)
Coeff. of
(micro Ohm-cm)
2700100-300 (varies by alloy)70-15016 - 120~20523.62.7

Design Recommendation

When designing with aluminum, it’s crucial to prioritize material-specific considerations. Ensure proper alloy selection based on required strength, corrosion resistance, and other relevant properties, as aluminum alloys vary significantly. Implement design features that capitalize on aluminum’s lightweight nature, enabling weight reduction and energy efficiency. Additionally, consider thermal expansion and contraction rates, as they can affect component stability and assembly. Effective heat dissipation strategies should also be integrated, especially in high-temperature applications. Employing rounded corners and smooth transitions can help mitigate stress concentrations, enhancing overall structural integrity. Lastly, surface treatments, such as anodizing or coatings, should be considered to protect against corrosion, ensuring the longevity of aluminum components.

Cost Saving Tip

One cost-saving tip for aluminum machining is to optimize cutting parameters, such as cutting speed, feed rate, and depth of cut, based on the specific aluminum alloy being processed. By fine-tuning these parameters, machinists can minimize tool wear, reduce energy consumption, and improve overall efficiency, resulting in reduced operational costs and enhanced productivity.